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1 From Scratch: Singular Value Decomposition
(SVD)

1.1 Mathematical Foundations

1.1.1 Definition

For any matrix A ∈ Rm×n, there exists a decomposition of the form:

A = UΣVT

Where: - U ∈ Rm×m is an orthogonal matrix whose columns are the left
singular vectors - Σ ∈ Rm×n is a rectangular diagonal matrix containing the
singular values σ1 ≥ σ2 ≥ . . . ≥ σmin(m,n) ≥ 0 - V ∈ Rn×n is an orthogonal
matrix whose columns are the right singular vectors

1.1.2 Derivation

The derivation of SVD begins by examining the squared matrices ATA and
AAT . These matrices are symmetric and positive semi-definite, meaning they
have non-negative eigenvalues and orthogonal eigenvectors.

Let’s denote: - The eigenvectors of ATA as the columns of V - The eigen-
vectors of AAT as the columns of U - The eigenvalues of ATA (and AAT ) as
λi

The singular values σi are defined as σi =
√
λi.

The connection between these becomes clear when we consider:

ATAvi = λivi

For any eigenvector vi with λi > 0, we can define:

ui =
1

σi
Avi

Now we can verify that ui is an eigenvector of AAT :

AATui = AAT 1

σi
Avi =

1

σi
A(ATA)vi =

λi

σi
Avi = σiui
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1.1.3 Geometric Interpretation

SVD provides a powerful geometric interpretation of linear transformations:
1. VT represents a rotation in the input space 2. Σ represents a scaling

along the coordinate axes (stretching or shrinking) 3. U represents a rotation
in the output space

This means that any linear transformation can be decomposed into a rota-
tion, followed by a scaling, followed by another rotation. The singular values in
Σ determine the amount of stretching or shrinking along each dimension.

Another interpretation is that SVD identifies the principal directions (or-
thogonal axes) in both the domain and range of the transformation, with the
singular values indicating the ”importance” or ”strength” of each direction.

1.2 Complete Worked Example

: Computing the SVD
Let’s compute the complete SVD decomposition of the following matrix:

A =

[
4 0
3 −5

]
1.2.1 Step 1

: Compute ATA and its eigenvalues/eigenvectors

ATA =

[
4 3
0 −5

] [
4 0
3 −5

]
=

[
25 −15
−15 25

]
To find the eigenvalues, we solve the characteristic equation:

det(ATA− λI) = 0

det

([
25− λ −15
−15 25− λ

])
= 0

(25− λ)2 − (−15)2 = 0

(25− λ)2 − 225 = 0

625− 50λ+ λ2 − 225 = 0

λ2 − 50λ+ 400 = 0

Using the quadratic formula:

λ =
50±

√
502 − 4× 1× 400

2× 1
=

50±
√
2500− 1600

2
=

50±
√
900

2
=

50± 30

2

So, λ1 = 40 and λ2 = 10.
Now we find the eigenvectors for each eigenvalue:
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For λ1 = 40:
(ATA− 40I)v1 = 0

[
25− 40 −15
−15 25− 40

] [
v11
v12

]
=

[
0
0

]
[
−15 −15
−15 −15

] [
v11
v12

]
=

[
0
0

]
This gives us −15v11 − 15v12 = 0, which simplifies to v11 = −v12.
With the constraint that eigenvectors should have unit length, we get:

v211 + v212 = 1

Solving these equations:
v11 = −v12

v211 + v211 = 1

2v211 = 1

v11 = ± 1√
2

We’ll choose v11 = 1√
2
and v12 = − 1√

2
.

So the first eigenvector is v1 =

[
1√
2

− 1√
2

]
.

For λ2 = 10: Using the same approach, we get v21 = v22, which gives us

v2 =

[
1√
2
1√
2

]
.

So our matrix V is:

V =

[
1√
2

1√
2

− 1√
2

1√
2

]

1.2.2 Step 2: Calculate the singular values

The singular values are the square roots of the eigenvalues:

σ1 =
√

λ1 =
√
40 = 2

√
10

σ2 =
√
λ2 =

√
10

So our matrix Σ is:

Σ =

[
2
√
10 0

0
√
10

]
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1.2.3 Step 3: Calculate the left singular vectors

For each σi > 0, we compute:

ui =
1

σi
Avi

For u1:

u1 =
1

2
√
10

Av1 =
1

2
√
10

[
4 0
3 −5

] [ 1√
2

− 1√
2

]

u1 =
1

2
√
10

[
4√
2

3√
2
+ 5√

2

]
=

1

2
√
10

[
4√
2
8√
2

]

u1 =
1

2
√
10

[
4
√
2

2
8
√
2

2

]
=

1

2
√
10

[
2
√
2

4
√
2

]

u1 =

[
2
√
2

2
√
10

4
√
2

2
√
10

]
=

[ √
2√
10

2
√
2√

10

]
=

[
1√
5
2√
5

]
For u2:

u2 =
1√
10

Av2 =
1√
10

[
4 0
3 −5

] [ 1√
2
1√
2

]

u2 =
1√
10

[
4√
2

3√
2
− 5√

2

]
=

1√
10

[
4√
2

− 2√
2

]

u2 =
1√
10

[
4
√
2

2

− 2
√
2

2

]
=

1√
10

[
2
√
2

−
√
2

]

u2 =

[
2
√
2√

10

−
√
2√
10

]
=

[
2√
5

− 1√
5

]
We can verify that u1 and u2 are orthogonal:

uT
1 u2 =

1√
5
· 2√

5
+

2√
5
· (− 1√

5
) =

2

5
− 2

5
= 0

And they’re both unit vectors:

∥u1∥2 =

(
1√
5

)2

+

(
2√
5

)2

=
1

5
+

4

5
= 1

∥u2∥2 =

(
2√
5

)2

+

(
− 1√

5

)2

=
4

5
+

1

5
= 1

So our matrix U is:

U =

[
1√
5

2√
5

2√
5

− 1√
5

]
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1.2.4 Step 4: Verify the decomposition

We have:

U =

[
1√
5

2√
5

2√
5

− 1√
5

]
, Σ =

[
2
√
10 0

0
√
10

]
, V =

[
1√
2

1√
2

− 1√
2

1√
2

]

Let’s compute UΣVT to see if we get A:

UΣVT =

[
1√
5

2√
5

2√
5

− 1√
5

] [
2
√
10 0

0
√
10

] [ 1√
2

− 1√
2

1√
2

1√
2

]
First, let’s compute UΣ:

UΣ =

[
1√
5
· 2
√
10 2√

5
·
√
10

2√
5
· 2
√
10 − 1√

5
·
√
10

]
=

[
2
√
10√
5

2
√
10√
5

4
√
10√
5

−
√
10√
5

]

UΣ =

[
2
√
2√
1

2
√
2√
1

4
√
2√
1

−
√
2√
1

]
=

[
2
√
2 2

√
2

4
√
2 −

√
2

]
Now, let’s compute UΣVT :

UΣVT =

[
2
√
2 2

√
2

4
√
2 −

√
2

][ 1√
2

− 1√
2

1√
2

1√
2

]

UΣVT =

[
2
√
2 · 1√

2
+ 2

√
2 · 1√

2
2
√
2 · (− 1√

2
) + 2

√
2 · 1√

2

4
√
2 · 1√

2
+ (−

√
2) · 1√

2
4
√
2 · (− 1√

2
) + (−

√
2) · 1√

2

]

UΣVT =

[
2 + 2 −2 + 2
4− 1 −4− 1

]
=

[
4 0
3 −5

]
= A

The decomposition is verified!

1.3 Interpretation of the Example

We’ve successfully decomposed A =

[
4 0
3 −5

]
into its SVD components:

A = UΣVT =

[
1√
5

2√
5

2√
5

− 1√
5

] [
2
√
10 0

0
√
10

] [ 1√
2

− 1√
2

1√
2

1√
2

]
The singular values σ1 = 2

√
10 ≈ 6.32 and σ2 =

√
10 ≈ 3.16 tell us about

the ”importance” of each dimension. The fact that σ1 > σ2 means that the
transformationA stretches vectors more along the first principal direction (given
by the first column of V) than along the second.
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The right singular vectors (columns ofV) show the principal directions in the

input space. In our example, these directions are v1 =

[
1√
2

− 1√
2

]
and v2 =

[
1√
2
1√
2

]
,

which are at 45° angles to the standard basis.
The left singular vectors (columns of U) show the principal directions in the

output space. These are u1 =

[
1√
5
2√
5

]
and u2 =

[
2√
5

− 1√
5

]
.

The geometric interpretation of this transformation is: 1. A rotation by 45°
in the input space (matrix VT ) 2. A scaling by factors of 2

√
10 and

√
10 along

the new axes (matrix Σ) 3. A rotation in the output space to align with the
standard basis (matrix U)

In the context of data analysis, if A were a data matrix, the SVD would tell
us that the data has two principal components, with the first component about
twice as significant as the second.

1.4 Connection to Applications

In a recommender system, if A were a user-item matrix: 1. The right singular
vectors would represent latent item features 2. The left singular vectors would
represent latent user preferences 3. The singular values would indicate the
importance of each latent feature

For a social network adjacency matrix, the SVD would reveal: 1. Community
structures (the singular vectors) 2. The relative strengths of these communities
(the singular values) 3. How users are positioned within these communities (the
components of the singular vectors)

The computational approach demonstrated here can be scaled to larger ma-
trices using iterative methods such as the power iteration or Lanczos algorithm,
which are much more efficient for large, sparse matrices commonly found in
real-world applications.

2 Advanced SVD andMatrix Norms: Notes and
Problems

2.1 Graduate Course in Social Networks Analysis

—

2.2 Part I: Vector and Matrix Norms

2.3 Theoretical Background

Vector norms quantify the ”size” of vectors, while matrix norms measure the
”magnitude” of matrices. These are critical in analyzing social network data,
particularly when working with user-item interaction matrices or adjacency ma-
trices.
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2.3.1 Vector Norms

For a vector x ∈ Rn:
1. **Lp Norm**: ∥x∥p = (

∑n
i=1 |xi|p)

1/p
- L1 Norm (Manhattan): ∥x∥1 =∑n

i=1 |xi| - L2 Norm (Euclidean): ∥x∥2 =
√∑n

i=1 x
2
i - L∞ Norm (Chebyshev):

∥x∥∞ = maxi |xi|
2. **Properties**: - Positivity: ∥x∥ ≥ 0 and ∥x∥ = 0 ⇐⇒ x = 0 -

Homogeneity: ∥αx∥ = |α|∥x∥ - Triangle Inequality: ∥x+ y∥ ≤ ∥x∥+ ∥y∥

2.3.2 Matrix Norms

For a matrix A ∈ Rm×n:

1. **Frobenius Norm**: ∥A∥F =
√∑m

i=1

∑n
j=1 |aij |2 =

√
Tr(ATA)

2. **Spectral Norm**: ∥A∥2 = σmax(A) =
√

λmax(ATA)

3. **Nuclear Norm**: ∥A∥∗ =
∑min(m,n)

i=1 σi(A)

4. **Induced p-Norm**: ∥A∥p = supx ̸=0
∥Ax∥p

∥x∥p

2.4 Applications in Social Network Analysis

- Centrality measures in networks (related to vector norms) - Network distances
and similarities (matrix norms) - User similarity measures in recommender sys-
tems - Regularization in matrix factorization models

2.5 Problem 1

: Norm Properties in Social Networks
**Problem:** Consider a social network with 5 users and the following influ-

ence vector v = [0.8, 0.3, 0.5, 0.9, 0.1], representing each user’s influence score.
a) Calculate ∥v∥1, ∥v∥2, and ∥v∥∞.
b) If we have two competing influence vectors v1 = [0.8, 0.3, 0.5, 0.9, 0.1] and

v2 = [0.7, 0.7, 0.7, 0.4, 0.4], which vector would you consider more significant
based on different norms? Interpret the meaning in a social network context.

**Solution:**
a) Calculating the norms: - ∥v∥1 = 0.8+0.3+0.5+0.9+0.1 = 2.6 - ∥v∥2 =√

0.82 + 0.32 + 0.52 + 0.92 + 0.12 =
√
1.8 ≈ 1.34 - ∥v∥∞ = max(0.8, 0.3, 0.5, 0.9, 0.1) =

0.9
b) Comparing v1 and v2: - ∥v1∥1 = 2.6 and ∥v2∥1 = 2.9 - ∥v1∥2 ≈ 1.34 and

∥v2∥2 ≈ 1.39 - ∥v1∥∞ = 0.9 and ∥v2∥∞ = 0.7
Interpretation: - v2 has larger L1 and L2 norms, indicating higher total and

average influence across the network - v1 has a larger L∞ norm, indicating the
presence of a single highly influential user - In social networks, v1 represents a
network with concentrated influence (potential influencers), while v2 represents
more evenly distributed influence
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2.6 Problem 2

: Matrix Norms in Interaction Data
**Problem:** Consider a user-item interaction matrix in a social recommen-

dation system:

R =


5 3 0 1
4 0 0 1
1 1 0 5
0 1 5 4


a) Calculate the Frobenius norm of this matrix.
b) If we know the singular values of R are σ1 = 8.82, σ2 = 5.29, σ3 = 2.24,

and σ4 = 0.89, calculate the spectral norm and nuclear norm.
c) How do these different norms help us understand the complexity of the

interaction data?
**Solution:**
a) Frobenius norm: ∥R∥F =

√
52 + 32 + 02 + 12 + 42 + 02 + 02 + 12 + 12 + 12 + 02 + 52 + 02 + 12 + 52 + 42

∥R∥F =
√
25 + 9 + 0 + 1 + 16 + 0 + 0 + 1 + 1 + 1 + 0 + 25 + 0 + 1 + 25 + 16 ∥R∥F =√

121 = 11
b) Using the singular values: - Spectral norm: ∥R∥2 = σ1 = 8.82 - Nuclear

norm: ∥R∥∗ = σ1 + σ2 + σ3 + σ4 = 8.82 + 5.29 + 2.24 + 0.89 = 17.24
c) Interpretation: - The Frobenius norm (∥R∥F = 11) measures the overall

energy or magnitude of interactions in the system. - The spectral norm (∥R∥2 =
8.82) indicates the maximum amplification the matrix can apply to a unit vector,
revealing the strength of the dominant pattern in the data. - The nuclear norm
(∥R∥∗ = 17.24) is related to the ”effective rank” of the matrix, suggesting how
complex the underlying interaction patterns are. - The large gap between σ1

and σ4 indicates that a low-rank approximation may effectively capture the
most important patterns in this recommendation data.

—

3 Part II

: Singular Value Decomposition (SVD)

3.1 Mathematical Definition

For any matrix A ∈ Rm×n, the Singular Value Decomposition is:

A = UΣVT

Where: - U ∈ Rm×m is an orthogonal matrix whose columns are the left
singular vectors - Σ ∈ Rm×n is a diagonal matrix containing singular values
σ1 ≥ σ2 ≥ . . . ≥ σmin(m,n) ≥ 0 - V ∈ Rn×n is an orthogonal matrix whose
columns are the right singular vectors
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3.2 Key Properties

1. **Rank**: rank(A) = number of non-zero singular values 2. **Pseudo-
inverse**: A+ = VΣ+UT where Σ+ inverts non-zero singular values 3. **Low-
rank approximation**: The best rank-k approximation toA isAk =

∑k
i=1 σiuiv

T
i

4. **Eckart-Young Theorem**: ∥A − Ak∥F =
√∑min(m,n)

i=k+1 σ2
i 5. **Nuclear

norm**: ∥A∥∗ =
∑min(m,n)

i=1 σi

3.3 Applications in Recommender Systems

1. **Matrix Factorization**: Using truncated SVD to factorize user-item ma-
trices 2. **Latent Factor Models**: Interpreting U and V as latent user and
item factors 3. **Collaborative Filtering**: Predicting missing entries in sparse
interaction matrices 4. **Cold Start Problem**: Handling new users/items
using SVD-based approaches

3.4 Problem 3

: SVD and Recommender Systems
**Problem:** Consider a user-item interaction matrix from a movie recom-

mendation platform:

R =


5 4 ? 4 ?
? 5 4 3 ?
2 ? 1 ? 3
4 3 ? 3 5


where ? represents missing ratings.
a) Given the rank-2 decomposition from SVD:

U2 =


0.56 0.31
0.52 0.13
0.21 −0.72
0.61 0.28

 ,Σ2 =

[
9.82 0
0 3.94

]
,VT

2 =

[
0.45 0.38 0.29 0.32 0.42
0.31 0.24 −0.61 0.18 0.56

]

Predict the missing rating for user 2 on item 5.
b) Calculate the Frobenius norm of the approximation error if we use this

rank-2 approximation, given that the original matrix has singular values σ1 =
9.82, σ2 = 3.94, σ3 = 2.11, σ4 = 0.87.

**Solution:**
a) The rank-2 approximation is given by:

R̂2 = U2Σ2V
T
2

To predict user 2 (index 1) rating for item 5 (index 4), we compute:

r̂1,4 = [U2]1,:Σ2[V
T
2 ]:,4
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r̂1,4 = [0.52, 0.13]

[
9.82 0
0 3.94

] [
0.42
0.56

]

r̂1,4 = [5.11, 0.51]

[
0.42
0.56

]
= 5.11× 0.42 + 0.51× 0.56 = 2.15 + 0.29 = 2.44

Therefore, the predicted rating for user 2 on item 5 is approximately 2.44,
which would round to 2.5.

b) Using the Eckart-Young theorem, the Frobenius norm of the approxima-
tion error is:

∥R− R̂2∥F =

√√√√ 4∑
i=3

σ2
i =

√
2.112 + 0.872 =

√
4.45 + 0.76 =

√
5.21 ≈ 2.28

This means that our rank-2 approximation has an average error of 2.28 across
all elements of the matrix, which is relatively high for a 1-5 rating scale. We
might consider using a rank-3 approximation for better accuracy.

3.5 Problem 4

: Advanced SVD Applications in Social Networks
**Problem:** In a social network with n users, the adjacency matrix A

represents connections, where Aij = 1 if users i and j are connected and 0
otherwise.

For a weighted network with the following adjacency matrix:

A =


0 0.9 0.3 0.5 0.2
0.9 0 0.8 0.1 0
0.3 0.8 0 0.7 0.4
0.5 0.1 0.7 0 0.6
0.2 0 0.4 0.6 0


a) Given that SVD decomposes A = UΣVT with singular values σ1 = 2.37,

σ2 = 0.92, σ3 = 0.64, σ4 = 0.43, σ5 = 0.18, how much of the network’s variance
is captured by the first two singular values?

b) In this social network context, interpret what the right singular vectors
(columns of V) represent.

c) If the first right singular vector is v1 = [0.44, 0.43, 0.52, 0.47, 0.35]T , which
users are most central in the dominant community structure?

**Solution:**
a) The total variance in the data is the sum of squared singular values:

Total variance =
∑5

i=1 σ
2
i = 2.372 + 0.922 + 0.642 + 0.432 + 0.182 = 5.62 +

0.85 + 0.41 + 0.18 + 0.03 = 7.09
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Variance captured by first two singular values =
σ2
1+σ2

2∑5
i=1 σ2

i

= 5.62+0.85
7.09 =

6.47
7.09 ≈ 0.912 or 91.2

The first two singular values capture approximately 91.2
b) In a social network context, the right singular vectors (columns of V)

represent: - Community structures or clusters within the network - The coeffi-
cients in each vector indicate how strongly each user belongs to that particular
community - The first right singular vector typically identifies the dominant
community structure - Subsequent vectors identify increasingly refined commu-
nity subdivisions - These can be interpreted as latent ”social roles” or positions
in the network

c) Looking at the first right singular vector v1 = [0.44, 0.43, 0.52, 0.47, 0.35]T :
- User 3 (index 2) has the highest coefficient (0.52), making them the most
central in the dominant community - User 4 (index 3) has the second-highest
coefficient (0.47) - User 1 (index 0) is third with 0.44

These users form the core of the main community structure in the network.
User 3’s high centrality means they are likely a key connector or influencer
within the dominant community structure.

—

4 Part III

: Connecting SVD and Norms in Applications

4.1 Matrix Completion and Low-Rank Approximation

In many real-world applications like recommender systems and social network
analysis, we often deal with incomplete data matrices. The mathematical for-
mulation for matrix completion is:

min
X

rank(X) subject to Xij = Mij ∀(i, j) ∈ Ω

where Ω is the set of observed entries. Since this problem is NP-hard, we
use a convex relaxation:

min
X

∥X∥∗ subject to Xij = Mij ∀(i, j) ∈ Ω

This is the foundation of many modern recommender systems.

4.2 Theoretical Connections

1. **Nuclear Norm as Convex Envelope**: The nuclear norm ∥X∥∗ is the
convex envelope of rank(X) on the unit ball of matrices with spectral norm 1.

2. **Relationship to SVD**: The nuclear norm is the sum of singular values,
which connects directly to the SVD.

3. **Regularization Techniques**: L1 and L2 regularization in matrix fac-
torization models correspond to constraining different matrix norms.
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4. **Recommender Systems Optimization**: Modern approaches often
solve:

min
X

∥PΩ(X−M)∥2F + λ∥X∥∗

where PΩ is a projection operator that keeps observed entries.

4.3 Problem 5

: Matrix Completion for Recommendation
**Problem:** Consider a partially observed user-item rating matrix:

M =


5 ? 2 ?
? 4 ? 1
3 ? ? 4
? 2 3 ?


a) Given that you want to complete this matrix using a nuclear norm mini-

mization approach, write the formal optimization problem.
b) If we approximate the nuclear norm by decomposing X = UVT where

U ∈ R4×k and V ∈ R4×k, what is the corresponding optimization problem for
a rank-2 approximation?

c) If the resulting completed matrix has a nuclear norm of 15.3 and a Frobe-
nius norm of 11.2, what does this indicate about the complexity of the recom-
mendation patterns?

**Solution:**
a) The formal nuclear norm minimization problem is:

min
X

∥X∥∗ subject to Xij = Mij ∀(i, j) ∈ Ω

where Ω = {(1, 1), (1, 3), (2, 2), (2, 4), (3, 1), (3, 4), (4, 2), (4, 3)} is the set of
observed entries.

In practice, we often solve a relaxed version:

min
X

1

2
∥PΩ(X−M)∥2F + λ∥X∥∗

where λ > 0 is a regularization parameter.
b) For a rank-2 approximation using X = UVT , the optimization problem

becomes:

min
U,V

1

2
∥PΩ(UVT −M)∥2F +

λ

2
(∥U∥2F + ∥V∥2F )

where U ∈ R4×2 and V ∈ R4×2.
This is the standard matrix factorization approach used in many recom-

mender systems, where the columns of U represent latent user factors and the
columns of V represent latent item factors.

c) The ratio of the nuclear norm to the Frobenius norm provides information
about the effective rank:
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∥X∥∗
∥X∥F

=
15.3

11.2
≈ 1.37

For a rank-1 matrix, this ratio would be exactly 1. The ratio of 1.37 suggests
that while the matrix has a full rank of 4, its ”effective rank” is relatively low
(likely between 1 and 2).

This indicates that the recommendation patterns are relatively simple and
can be well-approximated by a low-rank model. The user-item interactions likely
follow a few dominant patterns, which is good news for a recommender system
as it means we can effectively predict missing ratings with a simple model.

—

5 Conclusion

This class has covered advanced concepts in SVD and matrix norms with a focus
on applications in social network analysis and recommender systems. The key
takeaways are:

1. Vector and matrix norms provide important measures of magnitude in
different contexts, with each norm highlighting different aspects of the data.

2. SVD offers a powerful framework for understanding the structure of ma-
trices, enabling dimensionality reduction, noise filtering, and pattern discovery.

3. The connection between SVD and norms, particularly the nuclear norm,
provides theoretical foundations for modern matrix completion techniques used
in recommender systems.

4. In social network analysis, these tools help identify community structures,
influential users, and latent interaction patterns.

The problems presented demonstrate how these mathematical concepts trans-
late to practical applications in analyzing and predicting behavior in social net-
works and recommendation platforms.
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